

OCR (B) Chemistry A-Level DM3 - Redox

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is a half-cell?

What is a half-cell?

A half-cell contains the chemical species present in a redox half equation.

What is a metal/metal ion half-cell?

What is a metal/metal ion half-cell?

- A half cell where a metal rod is dipped into a solution containing an ion of the same metal.
- An equilibrium will be set up at the boundary where the metal is in contact with its ions.

• An example of the redox reaction happening at a metal/metal ion half-cell:

www.pmt.education

$$Zn^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Zn_{(s)}$$

What is an ion/ion half-cell?

What is an ion/ion half-cell?

 An ion/ion half cell contains a solution of ions of the same element but of different oxidation states e.g. Fe²⁺ and Fe³⁺:

$$\operatorname{Fe}^{3+}_{(aq)}$$
 + $e^{-} \rightleftharpoons \operatorname{Fe}^{2+}_{(aq)}$

• The electrode is usually graphite or platinum.

How do you balance a half equation?

How do you balance two half equations?

Half equations:

 $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-} \quad (oxidised)$ $Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)} \quad (reduced)$

Balance so that the number of electrons are the same:

$$Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$$

$$2Fe^{3+}_{(aq)} + 2e^{-} \rightarrow 2Fe^{2+}_{(aq)}$$

How do you combine two balanced half equations?

How do you combine two balanced half equations? $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-} \qquad 2Fe^{3+}_{(aq)} + 2e^{-} \rightarrow 2Fe^{2+}_{(aq)}$

• Combine the equations into one and cancel any common species that appear on both sides of the equation i.e. electrons, water and hydrogen ions.

$$Zn_{(s)} + 2Fe^{3+}_{(aq)} + \frac{2e^{-}}{2e^{-}} \rightarrow Zn^{2+}_{(aq)} + \frac{2e^{-}}{2e^{-}} + 2Fe^{2+}_{(aq)}$$

• Overall redox equation:

$$Zn_{(s)} + 2Fe^{3+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2Fe^{2+}_{(aq)}$$

What is *standard electrode potential*?

What is *standard electrode potential*?

The EMF/voltmeter reading when a half-cell of interest is connected to a hydrogen half-cell via a salt bridge, with all solutions having a concentration of 1 mol dm⁻³, under standard conditions (101 (or 100) kPa and 298 K).

What is a hydrogen half-cell?

What is a hydrogen half-cell?

- A half-cell containing hydrogen gas and a solution containing hydrogen ions.
- An inert platinum electrode is used to allow electrons into and out of the half cell.

www.pmt.education

$$2H^+_{(aq)} + 2e^- \rightleftharpoons H_{2(g)}$$

How do you use standard electrode potentials to calculate the standard cell potential?

How do you use standard electrode potentials to calculate the standard cell potential, E_{cell}^{θ} ?

$$E^{\theta}_{cell} = E^{\theta}_{(positive electrode)} - E^{\theta}_{(negative electrode)}$$

What is an electrochemical cell?

What is an electrochemical cell?

- Two different half-cells are connected by a salt bridge, with their electrodes connected to a voltmeter (measures EMF/cell potential). This allows the flow of electrons.
- It generates electrical energy from chemical redox reactions.

What does an electrochemical cell look like as a diagram?

What does an electrochemical cell look like as a diagram? Voltmeter Graphite electrode Copper electrode salt bridge Copper (II) Solution containing Iron solution (II) and Iron (III) • 0) www.pmt.education

What is a salt bridge?

What is a salt bridge?

- A salt bridge allows the transfer of ions.
- It is typically a concentrated solution of an electrolyte i.e. KNO_{3(aq)} that doesn't react with either half cell solution.

Why may a graphite or platinum electrode be used?

Why may a graphite or platinum electrode be used?

They are very unreactive- i.e. will not react with the half cell solutions and will not affect the voltmeter readings. Usually used in ion/ion half cells.

How do you predict which half-cell is being oxidised and which one is being reduced?

How do you predict which half-cell is being oxidised and which one is being reduced?

- The more negative the E^θ value, the greater the tendency for the system to be oxidised.
- The more positive the E^θ value, the greater the tendency for the system to be reduced.
- Hence the half-cell with the more positive E^θ is oxidised and the half-cell with the more negative E^θ is reduced.

PMTEducation

How do you predict the feasibility of a redox reaction?

How do you predict the feasibility of a redox reaction?

- The reaction is feasible if the oxidising agent has a lower standard cell potential than the reducing agent.
- The greater the difference in E^θ value, the more likely the reaction is to occur.

Why may a reaction not occur?

Why may a reaction not occur?

- Non-standard conditions (298 K, 101 kPa, 1 mol dm⁻³ solutions).
- Ambient energy of the system is lower than the activation energy.

What is rusting?

What is rusting?

- Rust is an iron oxide, (usually red) formed from the redox reaction of iron and oxygen in the presence of water/moisture.
- Iron is oxidised, oxygen (dissolved in water) is reduced. The products of this redox reaction then react to form a hydrated iron oxide.

How do you prevent rusting?

How do you prevent rusting?

- To protect iron from rust, the surface needs to be separated from air and water. i.e. by keeping the metal in oil.
- Coatings can be applied to iron.
- Alloys (e.g. stainless steel) can be made to prevent rusting.

